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A PILO'IIED MOTION SIMULATOR INVESTIGATION OF VTOL 

HEIGHT-CONTROL REQUIREMENTS 

By Ronald M. Gerdes 

Ames Research Center 
Moffett Field,  C a l i f .  

A moving-cockpit p i l o t e d  simulator w a s  used t o  inves t iga t e  VTOL a i r c r a f t  
P i l o t  opinion r a t i n g s  were used t o  height  cont ro l  requirements during hover. 

determine the  r e l a t ionsh ips  of cont ro l  power, damping, and time constant i n  
r e a l i s t i c  VTOL hovering tasks .  The minimum upward acce le ra t ion  f o r  "normal 
operation" w a s  found t o  be 1.06g 
determined t o  be between 1.02g and l.O3g. Minimum damping l e v e l s  f o r  normal 
operat ion were dependent on cont ro l  system t i m e  constant when operat ing with 
high thrust-to-weight r a t i o s .  Acceptable cont ro l  of a l t i t u d e  could be main- 
t a ined  i n  the  event of a r t i f i c i a l  v e r t i c a l  damper f a i l u r e  as long as the  con- 
t r o l  system t i m e  constant remained below 0.37 second. Minimum acceptable 
cont ro l  power was found t o  depend on the  v e r t i c a l  ve loc i ty  response during 
l i f t - o f f  and touchdown maneuvers. Hovering s teadiness  t e s t s  with zero veloc- 
i t y  damping indica ted  a tendency t o  overcontrol  a t  time constants above 0.6 
second while the  p i l o t ' s  f u l l  a t t e n t i o n  w a s  required a t  1 . 2  seconds. The 
r e l a t i v e  importance of cockpit  motion and v i sua l  d i sp lay  i n  co r re l a t ing  simu- 
l a t o r  and f l i g h t  da ta  was b r i e f l y  invest igated.  

while minimum acceptable safe operat ion w a s  

INTRODUCTION 

Prec ise  a l t i t u d e  cont ro l  near t he  ground i s  e s s e n t i a l  t o  the  success of 
any VTOL a i rp lane  mission, be it commercial or mil i t a ry .  Height-control 
boundaries es tab l i shed  with a p i l o t e d  f ixed-cockpi t  simulator a re  reported i n  
reference 1 and those with a l imi t ed  t r a v e l  motion simulator i n  references 2 
and 3. Reference 2 emphasizes the  importance of motion i n  height-control  s i m -  
u l a t ion  s tud ie s  and poin ts  out  t h a t  f ixed-cockpit  simulator r e s u l t s  a r e  a p t  t o  
be unduly conservative,  p a r t i c u l a r l y  i f  the  p i l o t  must r e l y  e n t i r e l y  on an 
instrument f o r  height  reference.  

The present  study w a s  undertaken t o  def ine more c l e a r l y  s a t i s f a c t o r y  
height-control  boundaries through use of a moving-cockpit simulator which 
allowed an inves t iga t ion  of the  important height-control  parameters with t r u e  
motion cues. The maneuvers f o r  eva lua t ing  height  cont ro l  were not r e s t r i c t e d  
by the  equipment s ince  the  l a r g e  v e r t i c a l  t r a v e l  and acce le ra t ion  ava i lab le  
s u b s t a n t i a l l y  exceeded t h e  t e s t  requirements. 
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Results of t h i s  s tudy are compared with previous s tud ie s  t o  ind ica t e  the  
Control power and damp- e f f e c t s  of motion i n  an "outside-world" environment. 

i ng  r e l a t ionsh ips  are discussed with p a r t i c u l a r  emphasis on the  e f f e c t s  of t he  
response t i m e  of t he  cont ro l  system. The e f f e c t s  of increas ing  l e v e l s  of con- 
t r o l  response t i m e  constant on hovering s teadiness  are a l s o  presented. 

NOTATIOD 

C.P. maximum upward cont ro l  power, g 

g acce le ra t ion  due t o  grav i ty ,  32.2 f t / s ec2  

PR p i lo t -opin ion  r a t i n g  

7 f i r s t - o r d e r  time constant,  see  

EQUIPMENT 

The tes ts  were conducted on the  Ames Height Control Simulator shown i n  
f igu re  1. The simulator includes a t rue ,  ' toutside-worldtt environment and a 
100-foot a l t i t u d e  capabi l i ty .  The two-place hel icopter- type cockpit  ( f i g .  2)  
has one degree of freedom of movement ( v e r t i c a l )  and i s  e l e c t r i c a l l y  dr iven 
through cables.  and maximum v e l o c i t i e s  of t 20  f t / s e c  
are possible .  The p i l o t ' s  instrument panel contains v e r t i c a l  posi t ion,  rate,  
and acce lera t ion  ind ica to r s .  

Accelerations of '2g 

ALtitude i s  cont ro l led  by means of a co l l ec t ive  p i t c h  con t ro l l e r .  Con- 
t r o l l e r  s e n s i t i v i t y  i s  l i n e a r  and f ixed  a t  0 . l g  per  inch of t r a v e l  as 
measured along an a r c  a t  the  hand gr ip .  Maximum upward cont ro l  power i s  
var ied  by adjustment of the  top  mechanical s top  of the  con t ro l l e r .  The m a x i -  
mum downward acce le ra t ion  provides a zero g ( f r e e  f a l l )  condi t ion with the  
con t ro l l e r  bottomed. 

The funct ion of t he  analog computer i n  the  simulation i s  shown i n  the  
block diagram of f igu re  3. The p i l o t ' s  con t ro l l e r  displacement, ac t ing  
through a l i n e a r  gain,  commands v e r t i c a l  acce le ra t ion .  This s igna l  i s  f u r -  
t h e r  modified by a f i r s t - o r d e r  time-delay c i r c u i t  t o  approximate engine 
response and cont ro l  l a g  cha rac t e r i s t i c s .  Vehicle damping i s  furnished by 
feeding back a ve loc i ty  t e r m .  The r e s u l t a n t  vehicle  acce lera t ion  s igna l  i s  
in tegra ted  twice t o  provide ap a l t i t u d e  pos i t i on  s igna l .  A l e a d  network i s  
incorporated t o  reduce the  l a g  i n  the  simulator dr ive  system. Simulator cock- 
p i t  response t o  a command s t e p  input  i s  improved t o  an equivalent 0.07-second 
f i r s t - o r d e r  t i m e  l a g  with the  l e a d  compensation operat ive.  
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TESTS 

Four NASA research  p i l o t s  pa r t i c ipa t ed  i n  t h e  tests.  The Cooper P i l o t  
Opinion Rating System, as reproduced i n  t a b l e  I and described i n  reference 4, 
w a s  used t o  r a t e  t he  cont ro l  cha rac t e r i s t i c s .  

Hovering operations,  requi red  of military VTOL a i r c r a f t  during t a c t i c a l  
operat ions i n  the  f i e l d ,  were considered i n  def ining the  primary mission as 
follows: 
forward f l i g h t ;  (2)  hovering gun platform from which t o  de l ive r  t a c t i c a l  
weapons; (3)  v e r t i c a l  letdown and landing i n t o  a confined area. To simulate 
these  operations the  p i l o t s  were asked t o  (1) l i f t  of f  and climb t o  an a l t i -  
tude of from 30 t o  50 f ee t  as smoothly and r ap id ly  as possible  with a minimum 
of "overshoot;" ( 2 )  hover a t  the  se l ec t ed  a l t i t u d e ;  (3)  cormnence a v e r t i c a l  
descent and touchdown a t  a spec i f i ed  time i n t e r v a l  (20 t o  30 sec)  a f te r  i n i t i -  
a t i o n  of t he  l i f t - o f f .  Factors  such as m a x i m u m  v e r t i c a l  ve loc i ty ,  con t ro l l e r  
displacement, 'lovershoot,'' hovering s teadiness ,  s ink  ra te  arrestment,  and 
touchdown prec is ion  were t o  be considered. A wheel touchdown reac t ion  force  
w a s  included i n  the simulation t o  help determine landing capabi l i ty .  Gusty 
a i r  conditions and ground proximity e f f e c t s  were not  included. 

(1) Ver t i ca l  takeoff  from a confined area p r i o r  t o  t r a n s i t i o n  t o  

Control s e n s i t i v i t y  w a s  f i xed  a t  0 . l g  per inch, which i s  a representa-  
t i v e  design value. Control power was var ied  from 1.02g t o  1 .2g and ve loc i ty  
damping var ied  from 0 t o  -1 per second. A response t i m e  constant f o r  the  
vehicle  height  cont ro l  system, representa t ive  of t y p i c a l  engine t h r u s t  
response cha rac t e r i s t i c s  and o ther  cont ro l  motion l ags ,  w a s  approximated by a 
f i r s t - o r d e r  time delay ( i . e . ,  t i m e  t o  reach 63 percent  of the s teady-s ta te  
value ) . 

Maximum upward cont ro l  power and ve loc i ty  damping were f i r s t  mapped a t  a 
very low value of cont ro l  response time constant and w a s  repeated using two 
higher values of t i m e  constant.  Pi lot-opinion r a t i n g s  of hovering s teadiness  
as a funct ion of time constant were a l s o  determined w i t h  zero damping and 
constant cont ro l  power. The p i l o t ' s  t a s k  f o r  these t e s t s  w a s  simply t o  hover 
as smoothly as possible  a t  a constant a l t i t u d e .  

E S U L T S  AND DISCUSSION 

Control Power and T i m e  Constant 

The r e s u l t s  of t he  maximum upward cont ro l  power s tud ie s  a re  presented 
i n  f igu re  4. Shown i s  the  va r i a t ion ,  with ve loc i ty  damping, of the maximum 
upward cont ro l  power a t  three l e v e l s  of cont ro l  response t i m e  constant.  The 
approximate values of maximum upward cont ro l  power and ve loc i ty  damping f o r  
t he  X - 1 4 ,  X-14A, SC-1, and H-23C a i r c r a f t  are p l o t t e d  on f igu re  4 f o r  com- 
par ison purposes. 
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A minimum damping, l e v e l  requirement i s  e s t ab l i shed  as control  power i s  
increased. The T = 0.07 a l s o  def ines  a minimum s a t i s f a c t o r y  control  power 
l eve l  of about 1.06 a t  a damping l e v e l  o f .  -0.5 per  second. Increasing t h e  
damping a t  t h i s  con t ro l  power causes s luggish  o r  ve loc i ty- l imi ted  ( less than  
3 f t / s e c )  operat ion while decreased damping causes overcontrol l ing.  Increas - 
i ng  the  t i m e  constant  t o  0.37 second s h i f t s  t he  minimum cont ro l  power requi re -  
ment t o  t h e  r i g h t  (1.08g) and raises the  minimum damping requirement t o  about 
-0.2 per  second. 'This agrees  qui te  w e l l  wi th  t h e  results obtained i n  refer-  
ence 2 a t  a t i m e  constant  of 0.2 second. Raising t h e  time constant t o  
0.87 second d r a s t i c a l l y  increases  the  minimum damping requirement, and makes 
damping in sens i t i ve  t o  cont ro l  power changes i n  the  region tes ted .  It i s  
i n t e r e s t i n g  t o  note the  apparent convergence of two of the  3-l/2 boundary 
curves. 

Results i nd ica t e  t h a t  high l e v e l s  of v e r t i c a l  damping are  required when 
cont ro l  system t i m e  constants  are l a rge .  An increase i n  t i m e  constant 
r e su l t ed  i n  an increase  i n  p i l o t  induced "overshoot" during operation within 
the  region of low damping and high cont ro l  power (lower r i g h t  quadrant).  
inherent  low velocity-damping c h a r a c t e r i s t i c s  assoc ia ted  with nonrotary wing 
VTOL vehicles  would thus requi re  t h a t  height-control  systems have low t i m e  
constants.  F l i g h t  da ta  f o r  the  X-14, X-14A, SC-1, and R-23C a i r c r a f t  agree 
w e l l  with da ta  of the  present  study. 

The 

I n  general ,  upward maximum v e l o c i t i e s  used d i d  not exceed 15 f t / s e c ,  even 
with high cont ro l  power. The p i l o t s  l imi t ed  t h e i r  downward ve loc i t i e s  as the  
control  power and/or damping were decreased i n  order  t o  assure  t h a t  s ink  ra te  
could be checked p r i o r  t o  touchdown. P i l o t  coments  ind ica ted  t h a t  10  f t / s e c  
w a s  used as an average comfortable ve loc i ty  when combinations of cont ro l  power 
and damping permitted.  Low cont ro l  powers were r a t e d  unacceptable i n  t e r m s  of 
ve loc l ty  requirements f o r  climb out (high damping area) and t o  a r r e s t  r ap id  
s ink  r a t e  on landing (low damping area).  

P i l o t s  f e l t  t h a t  a l l  values of cont ro l  power and damping examined a t  t i m e  
constants  of 0.07 and 0.37 second were within the  operat ional  region of 
t a b l e  I; therefore  only the  6-1/2 boundary f o r  
f igu re  4. This would ind ica t e  t h a t  acceptable cont ro l  of a l t i t u d e  can be 
maintained regard less  of whether t he  a r t i f i c i a l  height-control  augmentation 
device f a i l e d  as long as the  height-control  system t i m e  constant remains l e s s  
than 0.37 second. The minimum l e v e l  of cont ro l  power f o r  acceptable safe  
operat ion l i e s  between 1.02 and l.03g. 

T = 0.87 i s  presented i n  

Control system t i m e  constant e f f e c t s  were reported i n  references 1 and 2 
by se l ec t ing  representa t ive  control  power and damping combinations and obtain-  
ing  c o n t r o l l a b i l i t y  p i l o t  opinion da ta  as the  t i m e  constant w a s  var ied.  Sim- 
i l a r  da ta  from the  present  study have been p l o t t e d  with the da ta  from 
reference 1 f o r  comparison (see  f i g .  5 ) .  
of cont ro l  power and damping (A,  B, C )  were se l ec t ed  from each study as 
follows : 

I n  t h i s  f i gu re ,  th ree  combinations 
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Control power 

study ( re f .  1) 

I 
‘Ombination Present  Fixed cockpit  

A 1.2 1.2 

B 1.2 1.2 

C 1.02 1.06 

Although all combinations se l ec t ed  w e r e  not  i den t i ca l ,  it i s  f e l t  t h a t  
they are similar enough f o r  t h i s  discussion and f o r  t h a t  which i s  t o  follow 
concerning simulator performance. 

Veloci ty  damping 
Present Fixed cockpit  

study ( re f .  1) 

-1.0 -1.0 

0 -.125 
-. 50 -. 50 

The results of t h i s  i nves t iga t ion  are genera l ly  i n  agreement with prev i -  
ous s tud ie s  ( refs .  1 and 2 ) .  
ind ica tes  that  hovering c o n t r o l l a b i l i t y  de t e r io ra t e s  a t  a g rea t e r  rate i n  the  
low damping case. Likewise, high damping i s  bene f i c i a l  i n  enabling the p i l o t  
t o  cope with the  t i m e  delay. High values of p i l o t  r a t i n g  f o r  curve C are 
a t t r i b u t e d  t o  sluggish,  ve loc i ty  l imi t ed  cont ro l  response. The difference i n  
absolute  values f o r  t he  th ree  combinations i s  discussed l a t e r .  

Comparison of t he  slopes of curves A and B 

For discussion purposes the  results of f igu re  4, i n  terms of the  mission 
parameters previously described, can be divided i n t o  four  general  areas. The 
upper le f t -hand  area (low cont ro l  power and high damping) i s  character ized by 
s luggish response and very low v e l o c i t i e s .  Even though the  vehicle  can be 
l i f t e d  off  and landed, t he  success of t he  mission i s  doubtful because of 
maneuvering response r e s t r i c t i o n s .  T ime  constant e f f e c t s  are masked. Below 
t h i s  region, i n  the  area of reduced damping, maneuvering response i s  improved 
ye t  l imi t ed  by t o t a l  t h r u s t .  Sink rates can be excessive f o r  landing, but  
the primary mission can be accomplished i f  t he  t i m e  constant i s  l e s s  than 
0.37 second. The upper right-hand region i s  most des i rab le  f o r  a l l  aspects  
of the  mission. L i f t  o f f  and landing are  e a s i l y  cont ro l led  and the  primary 
mission i s  assured. Damping l e v e l s  are adequate f o r  s a t i s f a c t o r y  cont ro l  a t  
moderate time constants.  Hovering s teadiness  provides a good gun platform. 
Success of t he  primary mission i n  the  lower right-hand region depends on the 
t i m e  constant.  Response i s  rapid,  but  increased t i m e  constant causes the  
p i l o t  t o  overcontrol i n  a l l  hovering phases of the mission. 

Reference 5 recommends minimum v e r t i c a l  t h r u s t  margins of l .O5g f o r  
take-off  and l.l5g f o r  landing with a maximum v e r t i c a l  t h r u s t  response t i m e  
constant of 0.3 second. 
revea ls  t h a t  the  landing condition would be s a t i s f a c t o r y  as long as the  damp- 
ing  exceeded about -0.2 per  second. However, t he  take-off  value of l.O5g 
appears t o  be unsa t i s fac tory  even f o r  low t i m e  constants  and optimum damping. 

Comparison of these recommendations with f igu re  4 

Hovering Steadiness 

Figure 6 depic t s  t h e  results of the hovering s teadiness  t e s t .  The 
p i l o t s  were asked t o  maintain a constant a l t i t u d e  with cont ro l  power, cont ro l  

5 



s e n s i t i v i t y ,  and damping f i x e d  while the  time constant w a s  increased from 
0.07 t o  2.4 seconds. The p i l o t  opinion r a t i n g s  were based on the  requirements 
of reference 6, which i s  t o  hold height  21 foo t  with 1/2 inch o r  l e s s  of col-  
l e c t i v e  control  motion. S e n s i t i v i t y  w a s  0 . l g  per inch, maximum upward con- 
t r o l  power w a s  1.15g, and zero v e l o c i t y  damping w a s  used. 
decrease i n  hovering s teadiness  w a s  observed as the time constant w a s  
increased t o  0.3 second. 
p i l o t ' s  f u l l  a t t e n t i o n  w a s  required a t  1 .2  seconds. The referenced spec i f i -  
cat ions were not  met above 0.6 second and a time constant of 2.4 seconds w a s  
considered too  dangerous f o r  ac tua l  f l i g h t  because of l a rge  excursions i n  
a l t i t u d e .  

A not iceable  

Overcontroll ing w a s  evident  a t  0.6 second and the 

A comparison of f igures  4 and 6 revea ls  the  importance of considering 
the p i l o t  control  t a s k  when p i l o t  opinion da ta  a r e  compared. Although con- 
t r o l  power ( l . l 5 g ) ,  damping (0 ) ,  and time constant (0.07 see)  values f o r  the 
two tasks  were the  same, the  hovering s teadiness  task,  e a s i e r  of the  two, 
received a more s a t i s f a c t o r y  p i l o t  r a t ing .  

Comparison of Simulators and F l i g h t  

The r e l a t i v e  importance of cockpit motion and v i s u a l  d i sp lay  i s  of gen- 
e r a l  i n t e r e s t  when data  obtained from p i l o t e d  simulators a re  considered. 
Results from the  present  study have been cor re la ted  with previous inves t iga-  
t i ons  t o  determine motion and d isp lay  v a r i a t i o n  e f f e c t s .  Three c lasses  of 
simulators a r e  considered i n  the discussion t o  follow: f ixed  cockpit, l i m i t e d  
t r a v e l  moving cockpit , 'and l a rge  t r a v e l  moving cockpit. The f i r s t  simulator 
( r e f .  1) w a s  a rudimentary f i x e d  cockpit type with a two-dimensional v i s u a l  
display.  
r e f .  3) and a projected poin t  v i sua l  display.  The moving cockpit used i n  t h i s  
study has unlimited t r a v e l  i n  l i g h t  of t y p i c a l  VTOL missions previously 
described and t r u e  outside-world v e r t i c a l  motion cues. I f  hovering control-  
l a b i l i t y  i s  assumed t o  be a d i r e c t  funct ion of the vehicle  response s t imu l i  
f e d  back t o  the  p i l o t ,  then one would expect t he  r e s u l t s  of the present  study 
t o  be i n  c loser  agreement with f l i g h t .  

The cockpit of reference 2 had a l i m i t e d  t r a v e l  of 8 f e e t  ( see  

The 3- l /2  p i l o t  opinion r a t ings  f o r  references 1 and 2 a re  p l o t t e d  i n  f igu re  
7 with similar da ta  f r o m t h e  present  study f o r  d i r e c t  comparison. It should 
be noted t h a t  the  control  s e n s i t i v i t y  of the  referenced s tudies  w a s  O.3g per 
inch; however, s e n s i t i v i t y  t e s t s  ( r e f s .  1 and 2 )  ind ica ted  similar p i l o t  
r a t ings  a t  0.1 and O.3g per  inch. 

Comparison of the three  curves of f igu re  7 revea ls  t h a t  the introduct ion 
of cockpit motion reduces the minimum control  power and damping requirements 
f o r  s a t i s f a c t o r y  operation. These da ta  ind ica te  t h a t  unlimited motion tend t o  
improve the  cor re la t ion  of simulator da ta  with f l i g h t  r e s u l t s .  

The p i l o t  opinion da ta  of f igu re  5 ind ica te  t h a t  the  addi t ion  of motion 
usual ly  enables the p i l o t  t o  cope with increased values of time constant.  For 
example, with high damping and cont ro l  power ( A ) ,  normal operat ion i s  possible  
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t o  about 0.9 second, while similar da ta  from references 1 and 2 ind ica ted  t h i s  
l i m i t  t o  be only 0.4 second. 
low cont ro l  power curves agree ( C )  . 
response c h a r a c t e r i s t i c s  can modify simulator motion requirements. Combina- 
t i o n s  of cont ro l  power and damping represented by curves A and B r e s u l t  i n  
r ap id  response t o  con t ro l  inputs  while curve C operat ion i s  charac te r ized  by 
very slow and s luggish response. One poss ib le  reason f o r  t h e  proximity of 
curves C i s  t h a t  cockpit  motion cues play a l e s s e r  r o l l  i n  t he  determination 
of c o n t r o l l a b i l i t y  when cont ro l  response i s  low. A second poss ib le  reason 
could be the  s m a l l  d i f fe rence  i n  cont ro l  power (1.02 and 1 .06g) .  

It i s  i n t e r e s t i n g  t o  note how c lose ly  t h e  two 
These da t a  i l l u s t r a t e  how vehic le  

It i s ,  thus,  evident  from t h e  above t h a t  p i l o t  opinion da ta  obtained 
from simulator s tud ie s  can be s t rongly  inf luenced by the  degree of motion 
response f e d  back t o  the  p i l o t .  The use of unl imited motion and an ouside- 
world environment i n  the  present  s tudy r e s u l t e d  i n  c lose r  agreement between 
simulator and f l i g h t  da ta .  

CONCLUSIONS 

Hovering height-control  boundaries f o r  cont ro l  power and damping have 
been evaluated i n  a moving cockpit  s imula to r  using a r e a l i s t i c  VTOL mission 
f l y i n g  task .  This i nves t iga t ion  has r e s u l t e d  i n  the  following conclusions: 

1. The minimum upward acce le ra t ion  f o r  "normal operation" f o r  t y p i c a l  
hovering maneuvers should be about 1.06g. The minimum l e v e l  f o r  acceptable 
safe  operat ion should be between 1.02 and l.O3g. 

on cont ro l  system time constant,  p a r t i c u l a r l y  during operat ion a t  high t h r u s t  
t o  weight r a t i o s .  

3. A s  long as t h e  cont ro l  system time constant remains below 0.37 
second, acceptable cont ro l  of a l t i t u d e  can be maintained i n  the  event of 
a r t i f i c i a l  v e r t i c a l  ve loc i ty  damper f a i l u r e .  

minimum acceptable cont ro l  power. Operation i s  s luggish and ve loc i ty  l i m i t e d  
f o r  takeoff  i n  the  high damping case, and there  i s  inadequate a r r e s t  of  high 
ve loc i ty  s ink  r a t e s  f o r  landing i n  the  low damping case.  

p i l o t  tends t o  overcontrol  a t  time constants  above 0.6 second, and requi res  
h i s  f u l l  a t t e n t i o n  a t  1 . 2  seconds. 

2. For normal operat ion,  t he  minimum damping l e v e l  i s  highly dependent 

4 .  Velocity response plays an important p a r t  i n  the  determination of 

5. Tests of hovering s teadiness  a t  zero ve loc i ty  damping ind ica t e  a 

6. The use of unlimited motion and an outside-world environment tend t o  
improve the  co r re l a t ion  of simulator da t a  with a c t u a l  f l i g h t .  

Ames Research Center 
National Aeronautics and Space Admlnistration 

Moffett F ie ld ,  C a l i f . ,  June 1.5, 1964 
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TABLE I. - PILOT OPINION RATING SYSTEM 

A d  j e et ive Nune r i cal 
rating rating Description Can be 

landed ’ 

Primary 
mission 

accomplis he d 

1 Excellent, includes optimun Yes 
Normal 2 

3 Satisfactory ~ operation 
Good, pleasant to fly- Yes 
Satisfactory, but with some mildly 

Yes 
Yes 

I Yes , Yes II unpleasant characteristics 
I 

Unacceptable 

Catastrophic 

No 
operat ion 

7 

8 
9 

Acceptable, but with unpleasant 

Unacceptable for normal operation 
Acceptable for emergency condition 

characteristics 

only1 

Unacceptable even for emergency 

Unacceptable - dangerous 
Unacceptable - uncontrollable 

condition’ 

10 Motions possibly violent enough to 
prevent pilot escape 

Ye s 
Doubtful 

Doubtful 

No 
No 
No 

No 

Yes 
Yes 

Yes 

Doubtful 
NO 
No 

No 
- ~~~~~~ ~~~ ~ ~ 

‘Failure of a stability augmenter 
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A-30433 
Figure 2.-  View of simulator cockpit. 
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Figure 3.- Block diagram of simulator. 
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Figure 4 . -  Maximum con t ro l  power boundaries ou t  of ground e f f e c t  a t  
var ious l e v e l s  of time constant .  



---- Fixed cockpit simulator(Ref. I) 

Moving cockpit simulator ( present study) 

Maxi mum upward S ym bo1 
control power Velocity damping (present) 

present Ref. I present Ref. I 
A I .2 I .2 -1.0 -I .o 0 
B I .2 I .2 0 -0. I25 0 
C I .02 I .06 -0.50 -0.50 0 

0 .2 .4 .6 .8 1.0 
First order time constant, sec 

No operation 

Limited 
operation 

Norma I 
operation 

Figure 5.- A comparison of pilot rating shift due to control system time 
constant as determined on fixed and moving cockpit simulators. 



Maximum upward control power = 1.159 
Control sensitivity = 0.1 g/inch 
No velocity damping 

0 I 2 3 
First order t ime constant, sec 

Figure 6.- Variat ion of p i l o t  r a t i n g  with f i rs t  order time constant 
fo r  a constant a l t i t u d e  hovering task .  
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Figure 7.-  A comparison of maximum cont ro l  power boundaries as determined 
on three  types of simulators.  
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